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Abstract The accurate description of the structure and dynamics of CO2 at the instantaneous
air-water interface, along with the effects of surface fluctuations on the CO2-transport processes, is
essential for the development of negative emission technologies aimed to mitigate climate change.
In this study, we performed molecular dynamics simulations of CO2 at the air-water interface using
neural network potentials (NNPs) trained on ab initio data generated through density functional
theory-based molecular dynamics simulations. We compared these results with classical force fields
to assess their performance in modeling interfacial CO2 behavior. Our findings revealed that the
asymmetric interactions, coupled with thermal surface fluctuations at the air-water interface signif-
icantly influence CO2 transport into the aqueous phase. The simulations demonstrate that classical
force fields underestimate both the free energy of CO2 transport and the strength of its interactions
at the interface compared to the neural network potentials. The free energy and the interfacial
dynamics of CO2 are primarily influenced by the distribution of water within the instantaneous
interfacial water layer, responsible for creating asymmetric intermolecular interaction environment
within the interfacial region.

Keywords: CO2 Capture, Instantaneous Interface, Neural Network Potentials, Molecular Dynam-
ics Simulations, Free Energy, Reaction Rates.

Aqueous solutions containing amine-based molecules
is a promising class of absorbents for direct air cap-
ture (DAC) of CO2. For CO2 to traverse the gas/liquid
boundary, it must pass through the interface. Although
interfaces represent only a minor fraction of the total sol-
vent molecules, they serve as crucial bottlenecks for con-
trolling CO2 transport and reactivity. A detailed molec-
ular picture of how CO2 moves from air into the aqueous
phase and interacts with water and absorbents in the in-
terfacial region could reveal valuable strategies to acceler-
ate DAC.[1–3] A complete understanding of the CO2 cap-
ture mechanism requires investigating CO2 behavior at
both neat and tailored interfaces.[4–6] This study aims to
explore CO2 behavior at the pure air–water interface us-
ing machine learning interatomic potentials trained based
on density functional theory (DFT) calculations and con-
trasts them with the results from classical simulations
that lack the explicit account of polarization effects.

The air-water interface forms a unique heterogeneous
environment distinctly different from the bulk phase.[7–
9] Characterizing CO2 behavior at these dynamically
evolving interfaces requires understanding how interfa-
cial water structure and dynamics influence CO2 adsorp-
tion, desorption, diffusion, and reaction rates.[10–16] The
nanoscale region between air and water governs the flux
at which CO2 transfers into the aqueous phase,[17] where
it subsequently interacts with absorbent molecules. The
flux is indirectly affected by the anisotropy of intermolec-
ular interactions between water and CO2 within the in-
stantaneous water surface, dictating the structuring and
dynamics of CO2 at this boundary. Previous studies
of CO2 at the aqueous interface have largely relied on
ensemble-averaged descriptions, such as interfacial ten-
sion, width, and molecular orientation from such tech-

niques as Vibrational Sum-Frequency Generation spec-
troscopy (VSFG), Second Harmonic Generation (SHG),
or X-ray spectroscopy.[18, 19] However, the role of inter-
facial barriers and solvent effects on CO2 transport into
the aqueous phase remains poorly understood. Classical
models can enable the study of long timescale behavior
but often lack accuracy, while ab initio molecular dynam-
ics (AIMD) can provide a more accurate description, but
limited to short timescales due to high computational
expense.[20–22] To address this gap, we developed neu-
ral network potentials to describe the bulk and interfa-
cial water in the presence of CO2 trained on data from
AIMD simulations performed using the revPBE density
functional with the DFT-D3 dispersion correction. This
choice of the DFT method provides a good balance be-
tween the accuracy and computational cost, given its su-
perior performance in capturing both bulk and interfa-
cial properties[23, 24] among the family of generalized
gradient approximation (GGA) methods.[25] Although
more advanced ab initio methods could enhance the qual-
ity of the NNP potentials, the required timescales and
system sizes to develop such potentials and accurately
capture interfacial properties remain difficult to achieve,
even with current computational capabilities.[10, 26, 27]

Using neural network potentials,[28, 29] we aimed to
improve the accuracy of classical potentials to describe
the structure and dynamics of CO2 in the interfacial re-
gion. This work characterizes the interfacial chemical
processes controlling the transport of CO2 through the
interfacial phase boundary. Understanding these pro-
cesses is crucial to develop a complete understanding of
the direct air capture of CO2 at the air/water interface
and explain why CO2 reactions with amino acids are ki-
netically accelerated at these interfaces, as revealed by
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our recent study.[30] Herein, we find that the free energy
of CO2 transport from the air to the aqueous phase is
influenced by the distribution or the spread of instan-
taneous water molecules, creating a unique coordination
environment for interfacial CO2.[31, 32]

In this study, extensive AIMD simulations were car-
ried out on 3 bulk and 4 air/water interface systems.
Each system was simulated for at least 40 ps, with a
total of over 280 ps of AIMD simulations. From these
simulations, 280,000 snapshots were extracted and used
to train the NNP models, with details provided in the
SI. We then employed the trained neural network poten-
tials in LAMMPS patched with DeepMD-kit to simulate
air-water systems with two interfaces, initially placing
CO2 randomly in the simulation cell at a partial pres-
sure of about 0.145 atm. This pressure, which is rele-
vant for direct air capture, is sufficiently low to accu-
rately compute interfacial properties while minimizing
CO2 clustering and bubble formation observed at higher
concentrations.[34] We performed additional simulations
doubling the CO2 concentration and observed a similar
potential of mean force (PMF) for CO2 along the z axis
(Figure S6). This indicates that at the studied concen-
trations, the PMFs remains almost unaffected, validat-
ing our system for investigating structure and dynam-
ics under DAC conditions. However, further increases
in CO2 concentration would begin to impact interfacial
properties such as interfacial tension and width. The
analysis of the interfacial systems by Niblett et al. sug-
gests that the results for certain properties such as water
density distribution and orientation remain largely un-
affected when explicitly modeled long-range effects are
introduced.[28, 35] Recent studies showed that a compre-
hensive training on both bulk and interfacial systems can
provide more accurate description of the interface, where
the symmetry of the intermolecular interactions is bro-
ken and the long-range interactions are anisotropic. In
this study, we followed this strategy of extensive training,
ensuring that both the bulk and interfacial results are
comparable. Importantly, in the systems without ions
present at the interface, it is indeed possible to achieve
accurate results without a significant increase in error for
interfacial systems.[36] The RMSE in energy and forces
are obtained to be < 1 meV/atom and < 100 meV/Å re-
spectively for both bulk and interface (Table S1), showing
similar errors for trained NNP model. In cases where ions
are introduced, explicit treatment of long-range electro-
statics may be required to capture the correct behavior.
Additional technical details are provided in the SI.

Herein, we first compared the radial distribution func-
tions (RDFs) and coordination numbers between OH2O-
OH2O atoms in the bulk aqueous phase, modeled using
AIMD and two NNP models, with cutoff radii of 7 Å and
8 Å. Two cutoffs were tested to ensure they adequately
captured the intermolecular interactions between CO2
and water. The RDFs were compared against experi-
mental RDF data from reference 33. Our pair-correlation
results indicate only minimal deviations in the RDFs be-

tween the AIMD and NNP models, with the AIMD sim-
ulations exhibiting good agreement with the water-water
interactions similar to previous AIMD studies (Figure 1
A and B).[37] Moreover, the NNP models demonstrated
excellent consistency with AIMD in terms of water co-
ordination numbers. Recognizing that CO2 can inter-
act with water at two distinct sites—either the carbon
atom (CCO2

) with the oxygen atom (OH2O) or the oxy-
gen atom (OCO2

) with the hydrogen atom (HH2O)—we
computed the RDF and coordination numbers for both
interaction types (Figure 1 C-F). The overall shapes of
the CO2-H2O interaction RDFs are consistent with pre-
vious studies.[38–41] The smaller cutoff (7 Å), slightly
overestimated coordination numbers for CO2-water in-
teractions, whereas the larger cutoff of 8 Å accurately
reproduced experimental structural arrangements. This
highlights the importance of using larger cutoffs to accu-
rately model structural properties of weakly bound CO2.

We then characterized the distribution of CO2 at the
air-water interface in terms of the density profiles along
the z-axis (Figure 2). We observe that the NNP force
fields showed a greater density of CO2 within the inter-
facial region compared to the SPC/E and two other clas-
sical water models (TIP4P and TIP5P) (Figure S7). The
respective PMFs associated with CO2 adsorption within
the interfacial region show significant difference in the
well depth and the barriers associated with both the des-
oprtion of CO2 from the interface and the transport of
CO2 to the aqueous phase (Figure 2).

For both NNP and classical models, the desorption
barrier of CO2 from the interface to the air phase is ob-
served to be lower than the barrier for transport into the
aqueous phase. The free energy of CO2 desorption from
the classically modeled interface to the air phase is ∼ -0.7
kcal/mol lower than that from the NNP-modeled inter-
face (Figure 2). Similarly, the free energy required for
CO2 transport from the interface to the aqueous phase is
∼ -0.65 kcal/mol lower for the classical model compared
to the NNP model. Other classical models showed simi-
lar PMFs compared to SPC/E (Figure S7). Despite these
variations, both the NNP and classical models reveal con-
sistent differences in the thermodynamics of CO2 adsorp-
tion and desoprtion. Collectively, these results suggest
that a CO2 molecule at the interface is more likely to
move to the air phase than into the aqueous phase. To
quantify how these barriers affect the rates of transport,
we employed transition state theory in the harmonic ap-
proximation to obtain and compare the rate constants
(k) for CO2 desorption and transport into the aqueous
phase using the equation:

k =
kBT

h
e−∆W/kBT ,

where, h is the Planck constant, T is the temperature
and kB is the Boltzmann constant, ∆W represents the
free energy barrier for CO2 desorption to the air phase or
transport into the aqueous phase. To obtain the relative
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FIG. 1: The radial distribution function and coordination number between (a,b) OH2O-OH2O (c,d) CCO2 -OH2O and (e,f) OCO2 -
HH2O obtained in the bulk aqueous phase modeled obtained from AIMD simulations, NNP simulations with two different cutoffs
(7 and 8Å) used in the NNP training. The experimental radial distribution between OH2O molecules used for comparison with
AIMD and NNP radial distribution function is taken from ref. 33.

differences in the rates between the NNP and classical
model, we used

ln
kNNP

kclassical
= −∆WNNP −∆Wclassical

kBT
,

where kNNP, ∆WNNP, kclassical, and ∆Wclassical repre-
sent the rate constants and free energy barriers for the
NNP and classical models, respectively. For the classical
model, the difference in barriers results in a desorption
rate that is ∼ 2.3 × faster for CO2 desorption from the
interface to the air phase than for CO2 transport into the
aqueous phase. In the case of the NNP model, CO2 des-
orption is ∼ 3.0 × faster than its transport to the aqueous
phase. For both systems, the desorption rate of interfa-
cial CO2 is faster than its transfer into the aqueous phase
because, unlike air, CO2 must penetrate the interfacial
hydrogen-bonding network, moving layer by layer—such
as from interfacial water layers 1 to 5 (which have in-
trinsic viscosity) before reaching the bulk.[42–44] This
process is energetically less favorable, leading to slower
transport rates of CO2 phase transfer into the aqueous
phase. These results highlight that the asymmetric inter-
actions at the air-water interface play a significant role in
governing the free energies of CO2 transport, ultimately

influencing the rates of CO2 uptake into the aqueous
phase.[39]

It is important to understand the role of fixed charge
distribution at the interface in stabilizing CO2 within
the interfacial region. Therefore, we computed the elec-
trostatic potential along the z-axis for both the classical
and NNP models (Figure 3). The electrostatic potential,
based on the interactions along the z-axis, is calculated
using the equation:

Φ(z) =
1

ϵ0ϵr

∫ z

0

∫ z′

0

ρc(z
′′) dz′′ dz′,

where ϵ0 is the vacuum permittivity, ϵr is the relative per-
mittivity (taken as 1), and ρc(z) represents the charge
density distribution along the z-axis.[45–47] Since the
NNP model does not directly provide atomic charges,
we applied classical atomic charges obtained from the
SPC/E water model to the coordinates obtained from
the NNP simulations. We found that CO2 in the clas-
sical model would be electrostatically more strongly at-
tracted to the interface, which exhibit a more negative
electrostatic potential (∼ -0.3 V) compared to the NNP
model. If these interaction are key then CO2 molecules,
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FIG. 2: (a.) Number density profiles and the (b.) potential of mean force of the distribution of CO2 at the air-water interface
modeled using the classical potentials (SPC/E for water and TRAPP-flex for CO2). (c.) Number density profiles and the (d.)
potential of mean force of the distribution of CO2 at the air-water interface modeled using the neural network potentials. An
illustration of the water and CO2 in the instantaneous water layer (black) is provided in the inset of part (a.)

FIG. 3: Electrostatic potential along the z-axis for both the
systems modeled using the classical and neural network po-
tentials. We used the classical charges and NNP simulation
coordinates to obtain the electrostatic potential profiles.

whether in the air or aqueous phase, would be more likely
drawn to the interface in the classical model than in
the NNP model. In contrast, the PMF analysis shows
that CO2 move more easily between the two phases in
the classical model due to lower energy barriers, as com-
pared to the NNP model. The opposite trends between
the electrostatic potential profile and PMF data indicate
that, while electrostatic potential based on fixed point
charges reveals local electric fields and potential wells at
the interface,[48, 49] it does not fully capture the free en-
ergy landscape governing molecular transport. The latter
includes electrostatic contributions from induced charges
and polarization together with the thermally induced sur-

face fluctuations, and solvent effects from asymmetric in-
teractions with interfacial water molecules. To get more
details into the solvent effects, we computed the radial
distribution function (RDF) between the carbon atom of
CO2 (CCO2

) and the oxygen atom of water (OH2O) at the
interface using instantaneous interface definitions.[50, 51]
Likewise PMFs on Figure 2, the RDFs (Figure S8) show
stronger interactions between CO2 and water in the NNP
model compared to the classical model, pointing to dif-
ferences in the solvent effects controlling CO2 transport
across the liquid phase boundary.

FIG. 4: The survival probabilities of CO2 in the instantaneous
water layer of the air-water interface for the systems modelled
using classical and neural network potentials.

In the classical model, the weaker total solvation effects
at the interface results in CO2 moving back and forth
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between the interface and either the air or bulk aqueous
phase, decreasing its residence time in the truly inter-
facial layer and speeding up its dynamics at the inter-
face. To investigate this behavior further, we computed
the survival probability of CO2 in the interfacial layer.
Specifically, we calculated the probability of finding CO2

at a later time t, given its presence in the instantaneous
layer at t = 0 (Figure 4). The results showed that the
survival probability decayed more rapidly in the classi-
cal model compared to the NNP model, indicating faster
dynamics of CO2 at the air-water interface when mod-
eled with classical potentials. Similarly, faster dynamics
of H2O was observed in the classical system compared to
the NNP system (Figure S9).

Moreover, we observed significant differences in the
spread of the PMF and electrostatic potential (due to
wider charge density distribution, Figure S10), which we
attribute to variations in the surface fluctuations at the
interfaces modeled using classical and NNP potentials.
To quantify the extent of these surface fluctuations, we
employed a method similar to that described in ref. 52.
First, we computed the density profiles of water and CO2

in the instantaneous layers (Figure S11). These density
profiles were fitted to the Gaussian distribution function
and the standard deviation σ is used to compute the Full
Width at Half Maximum (FWHM) as 2

√
2 ln(2)σ, which

is used to characterize the spread of the surface fluctua-
tions (Figure S11).[42] The FWHM was calculated to be
2.94 Å for the classical model and 3.07 Å for the NNP
model, indicating that water is more widely spread at the
interface in the NNP model. This wider spread of inter-
face leads to larger surface fluctuations compared to the
classical model, possibly contributing to the free energy
associated with the CO2 transport from air to the aque-
ous phase.[53] As a result, significant differences in the
charge distribution (Figure S10) and orientation of wa-
ter at the interface were observed between the two models
(Figure 5).

FIG. 5: Water dipole orientation along the z-axis for both
air/CO2/water systems modeled using the classical and neu-
ral network potentials.

Specifically, in the NNP model, water molecules
demonstrate a more pronounced spread of water tilted

toward the air phase (with similar maximum cos val-
ues) within the interfacial region (the overall water ori-
entation behavior is consistent with previously observed
DFT-MD results[54]) compared to the classical model.
This pronounced tilt—where the hydrogen atoms of H2O
are more oriented (thicker water layer showing tilt in the
NNP model compared to classical water model) toward
the air—along with slower water dynamics (as shown by
the water O-H vector orientation in Figure S12), creates
favorable configurations for stronger interactions between
water and CO2. Consequently, the free energy barrier for
CO2 transport from the interface into the aqueous phase
rises, driven by the combined effects of enhanced surface
fluctuation-induced capillary waves, extended molecular
orientation, and improved solvation.[36, 55]

In summary, we studied the structure and dynamics
of CO2 at the air-water interface using machine learning
simulations and compared the results with classical force-
fields simulations. Our findings reveal significant differ-
ences in the distribution, dynamics, and free energy asso-
ciated with CO2 transport to the aqueous phase. Specifi-
cally, we observed that the classical force fields underesti-
mated the free energy barrier for CO2 transport and ex-
hibited weaker interactions between CO2 and H2O at the
air-water interface compared to neural network poten-
tials. First-principles accuracy is essential for computing
CO2 thermodynamics and kinetics at evolving interfaces,
as these simulations inherently include explicit polariza-
tion effects necessary for accurately describing interfacial
chemical and transport processes. Despite stronger in-
terfacial electrostatic potential from a fixed point-charge
model, CO2 interacts weaker with classical water. These
weaker interactions resulted in faster adsorption and des-
orption kinetics at the air-water interface. We observed
enhanced surface fluctuations and interface broadening
for the NNP compared to the classical model. The contri-
butions from the thermal surface fluctuations and solvent
rearrangements are often overlooked but are essential for
accurately characterizing chemical reactions and trans-
port processes at the interface, and should be considered
when using computational methods to model interfacial
chemical reactions and transport properties.
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