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Interfacial adsorbate organization influences a variety physicochemical properties and reactivity.
Surfaces that are rough, defect laden, or have large fluctuations (as in soft matter interfaces), can
lead to complex adsorbate structures. This is amplified if adsorbate-adsorbate interactions lead to
self-assembly. Although image analysis algorithms somewhat common for the study of solid interfaces
(from microscopy for example), images are often not readily available for adsorbates at soft matter
surfaces and the complexity of adsorbate organization necessitates the development of new charac-
terization approaches. Here we propose the use of adsorbate “density” images from molecular dy-
namics simulations of liquid/vapor and liquid/liquid interfaces. Topological data analysis is employed
to characterize surface active amphiphile self-assembly under non-reactive and reactive conditions.
We develop a chemical interpretation of sublevelset persistent homology barcode representations of
the density images, in addition to descriptors that clearly between different reactive and non-reactive
organizational regimes. The complexity of amphiphile self-assembly at highly dynamic liquid/liquid
interfaces represents a worst-case scenario for adsorbate characterization and as such the method-
ology developed is completely generalizable to a wide variety of surface image data, whether from
experiment or computer simulation.

I. Introduction

Despite their fundamental importance, liquid/liquid
interfaces are notoriously challenging to characterize
both experimentally and within the analysis of model-
ing and simulation data. Although macroscopic prop-
erties like interfacial tension and surface potential are
relatively easy to determine, several factors make a
molecular-scale understanding of interfacial organiza-
tion a challenge.[1–3] The small lengthscale of the in-
terfacial region (extending only a few molecular widths)
limits the spectroscopic and scattering methods that pro-
vide chemical insight; the most prevalent are Vibra-
tional Sum Frequency Generation (VSFG) or Second Har-
monic Generation (SHG) and photo-emission, while X-
ray scattering and reflectivity methods have also been
developed.[4–6] Atomistic molecular dynamics (MD)
simulations have played an incredibly important role in
providing molecular-level details of the interfacial struc-
ture. For both simulation and experiment, the concentra-
tion gradients of solutes approaching the interface and
their adsorption behavior, as well as their impact on in-
terfacial properties such as reactivity and transport, have
been a major area of study.[7–10]

To define the interface more precisely, we introduce
the Gibbs dividing surface (GDS) and the instantaneous
surface. The ensemble average position of the interface
may be represented by the Gibbs dividing surface, which
is the position of an ideal, flat, interfacial plane where
the density of one of the cosolvents (often water) is half
the density in the bulk.[11] The typical coordinate sys-
tem employed has the interfacial plane in the xy dimen-
sion and the perpendicular direction to the z axis. In
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FIG. 1. An overview of the analysis involved in the charac-
terization of molecular organization and/or speciation based
upon the spatial correlation function, molecular profiles, and
the persistent homology image analysis from adsorbate densi-
ties developed within this work.

general, the interface is, however, not flat and instead
there has been significant effort toward understanding
the characteristics of the instantaneous surface that rep-
resents the molecular-scale film where two immiscible
phases meet. The Willard-Chandler (WC) surface is a
coarse-grained representation based upon the isoden-
sity surface of the interfacial solvent molecules (typi-
cally water).[12] Complementary is the Identification of
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FIG. 2. The topology characterization of the (A) instantaneous and (B) time-averaged density surfaces using the sublevelset
persistent homology. The example shows the generation of bitmaps for two filtration values (FV, referred to as sublevels), with
FV=ρ and ρ+1 (0 and 1 in case of the instantaneous surface). The barcodes show the persistence of 0- and 1-dimensional
homology features (β0 and β1) as a function of filtration value (ρ).

Truly Interfacial Molecules algorithm (ITIM), which uses
probe spheres perpendicular to the instantaneous surface
to identify the solvent molecules of the immiscible sol-
vents that are in direct contact with one another.[13]
Along the GDS or the instantaneous surface, several
complementary analyses may be performed. Analysis
of MD simulations often focuses upon the 1-d distribu-
tion of molecules (or molecular density) perpendicular
to the interfacial plane. Molecular density distributions
of molecules present in the instantaneous surface can be
analyzed to determine the interfacial width (IW); this is
derived from the full width at half maximum of the mean
density distribution and can be compared directly to val-
ues obtained using X-ray reflectivity.[14, 15] Using algo-
rithms like ITIM, the identity of the molecules present at
the surface makes it possible to create spatial correlation
functions of the interfacial organization. For example, 2-
dimensional radial distribution functions (RDFs) can be
created based on the projection of the surface molecules
into an xy plane. This approach is useful for understand-
ing adsorbate-adsorbate interactions.[16–18] Subensem-
ble analysis can also be performed, revealing the breadth
of local molecular environments that contribute to inter-
facial reactions or responses to stimuli. For example, re-
cent work has used ITIM to isolate different orientations
of H2O at the interface that result from different solva-
tion environments about adsorbed ions.[19, 20] This was
then used to rationalize the ensemble average changes
to the orientation of water measured by VSFG as you
approach the interface. Based upon this discussion we
classify the analysis of MD data into two representative
groups, those based upon spatial correlation functions
and those based upon molecular distributions as illus-
trated in Figure 1.

Although these analyses provide significant insight,
there remains much benefit to expand the computational
tools that describe interfacial organization more compre-
hensively – to quantitatively incorporate concepts of or-
der/disorder of adsorbate configurations and to charac-
terize organization at different length scales. Toward this
end, we have borrowed well-established concepts from
image processing to develop a robust approach for char-
acterizing molecular organization at the liquid interface
(or any other) and introduce descriptors that trend with
well-known interfacial properties. In this work, we con-
sider the surface image obtained by projecting atoms or
molecules on the instantaneous surface onto a xy plane
(a 2-dim manifold embedded in 3-dim space). Within the
topological data analysis (TDA) of manifolds, sublevelset
persistent homology (PH) is a valuable tool and has
been employed in many studies to characterize image
data.[21–25] It is particularly adept at identifying minor
differences or anomalies within identical images.[26–28]
Most image analyses have focused on time-independent
data, however in computational chemistry temporal PH
descriptors could dramatically enhance our understand-
ing of adsorption/desorption phenomena at surfaces and
reactivity.

The image of adsorbates on the surface may be cre-
ated in multiple ways. We consider two cases in which
the adsorption at any instant in time is evaluated and the
second case using a short-time average of adsorbate po-
sitions (to create a density image). In both cases, a grid
in xy is first created and then the projection of the adsor-
bate from the 3-dimensional instantaneous liquid-liquid
interface onto the xy grid generates a bitmap, where
each cell of the bitmap represents a point whose value
is the number or density of adsorbates in that location.



An example of the resulting image is shown at the top of
Figure 1. The features in the image are encoded using
sublevelset persistent homology, which tracks the num-
ber and dimensionality of connected components within
the image as a function of a filtration value (FV, also
known as a sublevel) that spans the set of pixel inten-
sities. As shown in Figure 2, the lowest dimension infor-
mation, called zero-dimensional topological features (la-
belled β0) are connected components that are isolated
pixels or those that are connected because they have an
intensity value less than or equal to filtration value. A
cycle or hole in the image is considered 1-dimensional
information and labelled β1 and is indicative of a den-
sity barrier or maximum that has yet to be overcome
in the filtration and is surrounded by a low-lying basin.
The persistence of these topological features is tracked
across all sublevels by monitoring the first appearance
(or birth) of the feature at a specific FV and its disap-
pearance (or death) caused by merging with other com-
ponents at a higher-valued filtration. We utilize a com-
pact barcode representation of this information, though
alternative representations could include persistence di-
agrams and persistence landscapes.[29] Analysis of the
distribution of topological features can be used to cre-
ate metrics or descriptors of the image - as has been
done in image of liquid crystal nanocomposites[26] or
immune cells.[30] Additionally, the vectorized barcode
representation is easily implemented in machine learn-
ing frameworks for the identification of specific image
features.[31]

The current work demonstrates the broad applicabil-
ity of sublevel set persistence to understand images that
convey adsorbate organization and concentration at an
interface. PH descriptors quantify organizational fea-
tures in a manner consistent with chemical intuition and
also incorporate important new information regarding
the scale of topological features and their temporal evo-
lution. In turn, this provides added insight into the im-
pact of long-range correlations upon interfacial behavior
and reactivity.

II. Data Set

Two biphasic chemical systems and one model inter-
face were investigated to validate the image analysis
workflow and the chemical relevance of various persis-
tent homology descriptors. These consist of a surfactant
amphiphile, tributylphosphate (TBP), adsorbed to either
(1) a water/vapor interface or (2) a LiNO3(aq) interface
with hexane. TBP is a well-known amphiphile in the sep-
arations of complex aqueous mixtures where its adsorp-
tion behavior and transport properties of solutes have
been well-studied.[32–34] At the water/vapor interface
all TBP in the system will be adsorbed to the interface.
At the LiNO3(aq)/hexane interface the concentration of
adsorbed TBP can be tuned by LiNO3(aq) concentration
to alter both the average interfacial organization as well
as the dynamics of adsorption and desorption. The equi-
librium organization of TBP at the LiNO3(aq) / hexane in-

terface, analyzed through the sublevel set PH, was com-
pared to a model image constructed based on a density
analogous to TBP randomly placed at the interface. This
enabled detailed comparisons of the image of the adsor-
bated TBP density distribution on the surface in an ideal
stochastic image vs. that from the real equilibrated sys-
tem.

A. Molecular Dynamics Simulations

Chemical Systems The simulation boxes consisted of
two liquid interfaces with either the vapor or hex-
ane phases as shown in Figure S1 in the Supplemen-
tary Information and with exact molecular composi-
tions presented in Table S1. Four different TBP ad-
sorbed water/vapor systems were generated with initial
configurations that randomly placed 72, 96, 120, and
144 TBP molecules at each interface. Three different
LiNO3(aq)/TBP/hexane systems were generated by plac-
ing 238 TBP molecules in the organic phase. The aque-
ous phase electrolyte concentration varied from 1, 3,
and 5 M LiNO3(aq). The chosen TBP concentration led
to a 50% v/v fraction (i.e., 1.5 M TBP) in the organic
phase, which is consistent with active extraction condi-
tions of TBP transporting H2O and LiNO3 into the or-
ganic phase.[18]
Equilibration Protocol The equilibration protocol has
been benchmarked in Ref. 18. Briefly, all-atom classical
molecular dynamics simulations were performed in the
GROMACS software package.[35] A leap-frog algorithm
with a time step of 2 fs was used to integrate molecular
motions. Each water/TBP/vapor system was simulated
for 40 ns in an NVT ensemble, and the last 20 ns were
used for analysis. The LiNO3(aq)/TBP/hexane systems
were equilibrated in NPT and NVT for a minimum of 20
ns using the Nose-Hoover thermostat and Parrinello Rah-
man barostat.[36, 37] Production runs were performed
for more than 150 ns in the NVT ensemble. The elec-
tronic continuum correlation (ECC) optimized Li+ and
NO –

3 force fields were employed in combination with
TIP3P water as benchmarked in Ref. 38 and the opti-
mized TBP force fields taken from Ye et al.[39] Long-
range electrostatics were handled using Particle-mesh
Ewald (PME) summation.[40] A 16 Å cutoff was used
for both short-ranged and van der Waals atomic interac-
tions. Hydrogen-containing bonds were constrained us-
ing LINCS.[41] The calculation of collision diameter and
well depth cross-terms were evaluated using the Lorentz-
Berthelot combination rules.[42]

B. Surface Construction and Bitmap Creation

Within the simulation trajectory, TBP molecules ad-
sorbed to the instantaneous surface were identified us-
ing the ITIM algorithm[14] in a manner consistent with
Ref. 18. Density distributions were obtained by project-
ing the atomic coordinates of the P=O O-atoms onto the
60 × 60 Å xy plane using a 100×100 grid. The bitmap
representation of TBP sorption at a single point in time is
a distribution of pixels with values of 0 or 1 (absence or



presence of TBP). As indicated in Figure 2, at a filtration
value of 0 the pixels having a value of 0 are connected.
A single TBP adsorbed represents a cycle (ρ = 1) at FV
= 0 because it is a pixel intensity maximum that has yet
to be overcome at that filtration level. The temporal fluc-
tuation of this image type was analyzed using a variety
of metrics (vide infra). Alternatively, adsorbate images
were created representing a density distribution of ad-
sorbed TBP over a short-timescale. Here, we analyzed
the time average of bitmaps over 100 snapshots, sepa-
rated in time by 100 ps, which creates a surface density
whose maximum is 30 × 10−4 Å−2 for each pixel. This
time separation is within the average lifetime of the TBP
sorbed to the surface and thus these short time-averaged
densities should capture the average short-time distribu-
tion of TBP on the surface. As shown in Figure S2, simi-
lar PH bar code distributions (Betti curves) are observed
for the zero and 1-dimensional features irrespective of
whether a 10 ps spacing or 100 ps spacing of snapshots
was employed. A total of 10 time-averaged surfaces were
generated to obtain the average and standard deviations
of the persistent homology descriptors. The impact of
grid size upon topological features was examined, as de-
scribed in the Supplementary Information (Figures S3 -
S5).

C. Model Stochastic TBP Adsorbate Images

Using the time averaged concentration of the adsorbed
TBP at the LiNO3(aq)/hexane interface (Table I), im-
ages were constructed to represent stochastic distribu-
tions of adsorbed TBP. The stochastic image was con-
structed using Mersenne Twister, a pseudo-random num-
ber generator employed in the NumPy Python[43] pack-
age on 100×100 grids with an upper-density limit set
to the maximum TBP density observed from the short
time-average images from the equilibrated simulation
trajectories. The mean of 10 surfaces obtained from
the pseudo-random number generator was used for sub-
levelset PH analysis. The sum of the densities in the grid
representation for both the equilibrated and stochastic
distributions is the average number of TBP adsorbed to
the interface, as compared in Table I.

TABLE I. Ensemble averaged number of adsorbed TBP per in-
terface in LiNO3(aq)/hexane as compared to that obtained from
the stochastic reconstruction.
[LiNO3] M Equilibrated System Stochastic Distribution

1 79.3 72.3
3 49.7 47.6
5 30.2 35.0

III. Sublevelset Persistent Homology Analysis Protocol

The computational workflow is illustrated in Figure S6,
beginning with the ingestion of the molecular dynamics
coordinates of an interface, the creation of the instanta-
neous surface, the projection of the adsorbed molecular
density on the xy plane, and terminating with the calcu-

lation of the sublevel persistent homology features (cal-
culated using the GUDHI software package[44]). The
scripts developed in this work, alongside model data, are
provided in the GitLab repository at Ref. 45.

A. Sublevelset PH Descriptors

The sublevelset PH descriptors are categorized into two
types: 1) those descriptors that encompass the behav-
ior of the sublevelset PH features over the entire FV
range and are represented as a distribution, and 2) those
descriptors that analyze the distribution to yield a sin-
gle number. The range of filtration values sampled de-
pends upon whether the instantaneous or averaged ad-
sorbate images were examined. In the former, the pixel
intensities are either 0 or 1, while in the latter the two-
dimensional density distribution ρ(x,y) employs a FV(ρ)
that is sampled every ∆ρ = 1.0 × 10−4 Å−2. Any of
these descriptors may be studied as a function of time
to yield information about the dynamic evolution of the
adsorbate organization.

Betti Curves and Excess Betti Curves. The output of the
sublevelset PH (number of n-dimensional bars, birth and
death times) is used to compute the Betti curve; this is
the total number of β0 or β1 bars as a function of FV.[46–
49] In this case, it makes the most sense to examine Betti
curves of the short-time average time of TBP adsorption,
which creates a density image. The difference between
the Betti curves obtained from a two-dimensional sur-
face representing the equilibrium density distribution of
TBP (βn(ρ)) and the analogous stochastic distributions
(β
′
n(x) ) was used to obtain excess Betti curves:

β̃n(ρ) = βn(ρ)−β
′
n(ρ). (1)

The excess Betti curves indicate the change to organiza-
tional features relative to a random TBP density distribu-
tion. In the real simulation data TBP is known to form
TBP(H2O)TBP dimers that further assemble into “protru-
sion”, self-assembled macrostructures that are responsi-
ble for solute transport.[18, 33]

Betti Index. The cumulative number of bars over the sub-
level set of the Betti curves provides insight into how
quickly the components merge as a function of FV(ρ).
For example, if at the lowest FV(ρ) there are 200 β0
components that are all within a narrow range of ρ, then
those components will merge (or die) very quickly and
the cumulative number of bars will be close to the value
of the lowest ρ sublevel. However, if there are large vari-
ations in ρ that inhibit the merging of the components
(indicating “patches” of TBP density or heterogeneity of
the surface adsorption) then the sum of all bars across
all ρ will be much higher. To obtain the the cumula-
tive βn, the values of the Betti-curve was first interpo-
lated using basis-spline function[50] as implemented in



Scipy[51] and distributed onto 103 bins and integrated
as:

h(βn) =

∫ρmax
0

βn dx. (2)

The value of hi(βn) at ρmax is termed the Betti index. A
high Betti index represents a high density of bars within
the persistent barcode that persist for a long range of ρ
values. Further, the excess Betti index is defined as

h̃(βn) = h(βn)−h
′
(βn), (3)

where h(βn) and h
′
(βn) represent the Betti index for

time-averaged and the analogous stochastic distribu-
tions, respectively.

Persistent Lifetimes and Entropies. The lifetime of the
bar is the bar length in ρ is li = ρb−ρd, where ρb and
ρd are the FV values at birth and death. A descriptor
of the distribution of lifetimes is the persistent entropy,
which has been previously employed to characterize het-
erogeneities within hydrogen bonding networks of aque-
ous electrolytes[52]:

PE =
∑
i

−
li
L
log

li
L

, (4)

where L is the cumulative lifetime of all bars.[53, 54]
A high value of PE reflects large variations in birth and
death times.[55] Persistent entropies were calculated for
both 0- and 1-dimensional homology features and com-
pared for both the equilibrated and stochastic distribu-
tions. The excess persistent entropy is computed as the
difference between the entropies of the equilibrated and
the stochastic surfaces.

Nonideality Index of the Instantaneous Surface. It is de-
sirable to have an index that directly reflects TBP...TBP
interactions, and as such, non-ideality of the surface. At
any instant in time a single TBP adsorbed at the instan-
taneous surface is manifested as a cycle within the sub-
levelset persistent homology barcode if adjacent empty
pixels are connected (Figure 2). Provided there are no
interactions between TBPs (meaning there are adjacent
pixels with a value of 1), then the number of cycles is
equivalent to the number of adsorbed TBP. In this case,
we state that the homogeneous, noninteracting adsor-
bate surface is “ideal”. We define the non-ideality index
I as:

I=
number of observed cycles

average number of adsorbates
(5)

The temporal fluctuations of I, in particular, should yield
significant insight into the dynamics of adsorbate organi-

zation. This is highly relevant to solute transport across
the oil/water phase boundary, given that TBP forms self-
assembled protrusion architectures that are key to the
transport mechanism.

IV. Results and Discussion

Figure 3 presents representative adsorbate density im-
ages of TBP at the water/vapor and electrolyte/hexane
interface. Although there are changes to the xy inter-
face dimensions, the homogeneous nature of the density
distribution at the water/vapor interface (Figure 3A) is
very similar to a density image with a stochastic distri-
bution (Figure 3B), while clear patches of TBP appear in
the electrolyte/hexane interface (Figure 3C). Yet to date,
very few quantitative measures exist to differentiate or-
ganizational features across lengthscale and to correlate
organizational features to macroscopic interfacial prop-
erties. Further, distinct organizational patterns may be
related to reactive processes at the interface, including
transport.

A. Analysis of Persistence Barcodes

Sublevelset persistent homology of the images of ad-
sorbate density provides a means by which to understand
the distribution and variations in density maxima and
minima in the image. This is to be differentiated from di-
rect correlations with spatial distributions, of which there
are several tools that already exist for computational
chemists, as described in the Introduction. To develop
chemical intuition regarding the information contained
in the PH barcode information, we first analyze the dif-
ferences in the Betti curves across different dimensions
for the TBP laden LiNO3(aq)/hexane interface. Signifi-
cant variations in TBP organization and reactive trans-
port properties have previously been reported as a func-
tion of different aqueous solution conditions.[18, 33]
At an aqueous 1M LiNO3 concentration c.a. ∼ 80 TBP
are adsorbed to the interface - yet their transport H2O
or LiNO3 into the organic phase is very slow on the
timescale of the MD simulations. However, under 5 M
LiNO3 the TBP concentration is reduced at the inter-
face to only ∼ 30 adsorbates yet the rate of solute trans-
port through surface TBP protrusion assemblies is signif-
icantly faster.

Let us first consider the comparison of the adsorbate
density images under non-transporting conditions (80
TBP) against an image representing a stochastic TBP dis-
tribution at the same concentration (Figure 4). The Betti
curves of each image are presented as a function of the ρ
filtration. For both images, the β0 curves start very close
to zero, which indicates that in each pixel there is a small
probability of a TBP being adsorbed. In the stochastic
distribution the number of β0 components at the maxi-
mum in the Betti curve is much larger than in the image
created from the equilibrated MD simulation, this means
the density is spread out across many more pixels and
with more random density values for each pixel. Given
this, in the stochastic image barcode each pixel is less
likely to be merged with another pixel at low filtration
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FIG. 3. Representative density surfaces analyzed in this study. (A) Adsorption density surface of ∼ 72 TBP adsorbed at the
water/vapor interface (x = y = 60 Å). (B) Stochastic distribution model surface representing ∼ 72 TBP on a x = y = 52 Å surface,
(C), and an average of ∼ 79 TBP adsorbed at LiNO3(aq)/hexane interface (x= y = 52 Å).
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FIG. 4. (A) Time-averaged TBP adsorption surfaces obtained from equilibrated molecular dynamics simulations with ∼ 80 TBP
adsorbed at LiNO3(aq)/hexane interface, and their respective (B) 0- and 1-d Betti curves. Analogous (C) stochastic adsorption
surfaces with their respective (D) 0- and 1-d Betti curves. Error bars represent the standard deviation. A total of 10 surfaces are
used to compute the standard deviation.

values and the density maxima are revealed at higher ρ
filtrations. In the barcode of the equilibrated MD im-
age, the TBP density is not randomly distributed and
is instead influenced by TBP...TBP interactions. Patches
of TBP density exist throughout the image, which cause
groupings of merged pixels that have a ρ intensity 6 the
filtration, and as such a smaller number of connected
componets are observed at low ρ. These merged β0 com-
ponents form cycles, β1, that show the distribution of
density maxima surrounded by basins of the low-lying
connected adsorbate density. Thus, there is a growth of
β1 distribution a lower ρ than in the stochastic image.
This rationale is illustrated within Figure 5, which visu-
ally depicts the distribution of pixels as a function of the

surface organization in surface with no self-assembled
TBP as would be expected in a stochastic distribution ver-
sus the image from the equilibrated simulation.

To better understand the maxima and minima in den-
sity within the images, we now consider the distribution
of birth and death times for the β0 and β1 bars within
the associated Betti curves. Figure 6 presents this data
for the average density image of the non-transporting n
= 80 and transporting n = 30 TBP LiNO3(aq)/hexane in-
terfaces. Every β0 bar that is born represents a minima
on the density surface that dies upon merger of the pix-
els that ρ 6 the FV. If the density minima are connected
through a maximum along a single dimension x or y in
the grid, then when the FV overcomes the barrier the pix-



FIG. 5. An illustration of the merging of pixels at each filtra-
tion level of the time-averaged adsorption surfaces under non-
transporting and solute transporting systems.

els merge without the formation of any cycles or β1 com-
ponents. However, if a density maxima is surrounded by
a radial basin that surrounds it - then merging of the β0
minima to form that basin results in the birth of a cycle
or β1 bar in the Betti curve. One might anticipate that a
radial basin in density is somewhat uneven with its own
small barriers in density that need to be overcome in the
filtration before the basin forms. If this is the case, then
there will be a significant number of deaths of β0 bars
before the basin is fully formed and the β1 bar is born.
If there are many inter-connected basins of density, then
the death of a small number of β0 bars may lead to large
numbers of β1 bars being born. Given this, we observe
in the n= 80 TBP image that the β1 bars are born nearly
linearly with the death of β0 bars between ρ values of 0
- 7, after which cycles grow at a much more rapid rate
than the death of β0 features. This indicates that there
are many inter-connected basins on the density surface,
but that there are many low-lying rough features on the
density surface that must be overcome in the FV of ρ, up
to a density value of ≈ 7 before the basins connect. These
basins surround density maxima that are represented by
the β1 bars in the Betti curve. Interestingly, just as the
number of β1 bars are being born is rapidly increasing,
there too is an increase in the death of β1 bars - meaning
that the density maxima are being overcome. Note that
broad range of the distribution of the β1 death times.
This indicates that there is a large variation in the den-
sity maxima values on the density surface.

Comparing this behavior to the density image of n =
30 TBP at the LiNO3(aq)/hexane interface several impor-
tant differentiating characteristics emerge. First, the very
low TBP concentration on the surface means that the β1
bars are born at the same time that the β0 bars. This
means there are many small patches of TBP density that
may or may not form cycles but are surrounded by a sur-
face that has many pixels of ρ = 0 (a huge basin of den-

sity). As the filtration in ρ is increased, the low TBP con-
centration immediately leads to the merger of the β0 fea-
tures because the intervening density maxima are easily
overcome - yet all of these mergers lead to the formation
of β1 bars as indicated by the complete overlap of the β0
death and β1 birth distributions and the very large num-
ber of β1 bars that are born for a relatively small number
of β0 bar deaths. Interestingly, one might anticipate that
at such a low TBP adsorbate density that the TBPs would
be rather homogeneously distributed on the surface and
not interact with one another. However if this were the
cases then the deaths of the β1 density maxima would
occur rapidly and over a very short density range. In-
stead, it is clearly evident from the death distribution of
the β1 bars that there are large variations in the density
maxima that are as pronounced as in the n = 80 surface
condition. This has significant bearing upon the organi-
zation of the TBP in the n = 30 surface and their ability
to transport solutes, as revealed by the PH descriptors
developed below.

B. Trends of PH Descriptors with Experimental
Observables

It is important that descriptors of the PH barcodes have
good correlation with experimental observables. The wa-
ter/vapor system is used as an example with an increas-
ing number of adsorbed TBP; this system does not in-
volve mass transport, and the variations in the descrip-
tors will reflect only changes to the TBP surface cover-
age. The two-dimensional density distributions of TBP
on the water/vapor surface with adsorbate concentra-
tions from n = 72 to 144 TBP per interface and the re-
sulting Betti curves and persistent entropy are presented
in Figures S7 - S8. As anticipated, the 0-d Betti curves
reflect an increase in the total number of persistent fea-
tures representing the increase in the TBP density at the
surface. The 1-d Betti curves do not show a significant
increase in the number of cycles but illustrate an increase
in the complexity of the TBP organization at the surface
by larger persistence of bars and the shift of the maxima
to a greater filtration value.

As a starting point, we first consider the correla-
tions of the Betti index and persistent entropy with
trends in macroscopic (experimentally measurable) in-
terfacial properties that depend upon adsorbate concen-
tration, such as interfacial tension. The respective per-
sistent entropies PE(βn) and Betti-index h(βn) also in-
crease as a result of variations in the adsorbate den-
sity/concentration. More importantly, as shown in Fig-
ure 7, these sublevelset PH descriptors exhibit strong in-
verse correlations with the macroscopic predicted inter-
facial tension obtained from the simulation data using
the pressure tensor method.[56] The strength of the neg-
ative correlation between interfacial tension and PE (as
represented by the slope m fit by linear regression) is
quantified to be > 103 times than h, showing a greater
sensitivity of PE over the Betti-index.



FIG. 6. (A) Distribution of birth and death times for β0 and β1 bars within the analogous Betti curves for the density image of the
n = 80 TBP laden LiNO3(aq)/hexane interface (non-transporting conditions). (B) Distribution of birth and death times for β0 and
β1 bars within the analogous Betti curves for the density image of the n = 30 TBP laden LiNO3(aq)/hexane interface (transporting
conditions).

FIG. 7. The correlation between the interfacial tension (γ) with (A) 0- and (B) 1-d persistent entropy and (C) 0- and (D) 1-d
Betti-index for the systems with 72, 96, 120 and 144 TBP per interface at the water/vapor surface. The data is fitted to a linear
regression model to obtain the slopes provided in the inset.

C. Descriptors of Adsorbate Organization

Unlike the relatively homogeneous distribution of the
TBP monolayer at the water/vapor interface, the adsorp-
tion at a non-polar liquid interface involves TBP···TBP in-
teractions that may form self-assembled species that are
manifested as the density maxima in the density images
as described in SectionIV A. Although we have demon-
strated that the Betti index and PE are well-correlated
with the adsorbate concentration, understanding how
PH descriptors can connect the variation in the density
maxima and minima of the image to chemical reactiv-
ity is essential. The PH descriptor behavior is examined

for images as a function of TBP concentration where we
delineate the non-transporting n = 80 TBP adsorbate
LiNO3(aq)/hexane density image from the transporting n
= 30 image. Although this change to the surface trans-
port activity is anticipated to be related to the surface
TBP heterogeneity, this is not readily apparent from vi-
sual inspection of the density images (Figure S9) due to
the large change to adsorbate TBP concentration. One
might intuit that the adsorbate organization heterogene-
ity should be less in the 80 TBP adsorbed conditions
(non-transporting) relative to the 30 adsorbed TBP con-
ditions (transporting). Given the concentration sensitiv-
ity of the PH barcodes, we employ excess PH descriptors



FIG. 8. (A) Excess Betti curve of 0-dimensional components, β0(ρ) - β
′

0(ρ) = β̃0(ρ). (B) Excess Betti-index of 0-dimensional
components, h(β0)−h

′
(β0) = h̃0(ρ). (C) Excess persistent entropy PE(β0)−PE

′
(β0) = P̃E(β0(ρ))).

based upon the difference of the PH descriptor of the
images from the equilibrated MD simulation versus an
image that represents a stochastic ideal distribution.

The excess Betti curve (denoted by β̃0(ρ)) is presented
in Figure 8A as a function of TBP adsorbate concentra-
tion on the LiNO3(aq)/hexane interface. Here, the ex-
cess β̃0(ρ) is negative across the entire filtration range.
This means that at any given filtration ρ value there are
more connected components in the image representing
a stochastic TBP distribution than in the density image
of the equilibrated liquid/liquid interface (as would be
implied from Figure 4). The convergence of β̃0(ρ) to-
ward zero is correlated to the pixel intensities in each
image (meaning the value of ρ). Thus, the values of the ρ
filtration at which β̃0(ρ) approaches zero are directly re-
lated to TBP concentration. Examining the concentration
dependence of β̃0(ρ), there is a clear differentiation be-
tween the surface density images of under transporting
conditions (30 TBP adsorbates) versus non-transporting
(80 TBP adsorbates). The β̃0(ρ) for the transporting
surface is much more negative than in the transporting
case, meaning that the variations in surface density (het-
erogeneity of the adsorption) is significantly enhanced
under transporting conditions. In the case of the β̃1(ρ)

curves (Figure S10), at low ρ filtration, the values of β̃1
are positive because the density images from the equili-
brated MD simulation have TBP···TBP interactions that
cause the formation of cycles β1 at the expense of the
number of β0 components. The maximum values of β̃1
are 370, 360, and 329 for 30, 50, and 80 adsorbed TBP,
respectively. As the ρ filtration value is increased a nega-
tive excess is observed that is consistent with the fact that
in the stochastic image the cycles form at larger ρ values
due to the homogeneous distribution of on the surface
which is manifested in the density image.

In summary, the excess β̃n(ρ) curves (including the
values of β̃n at the peak maxima and/or minima) indi-
cate an ability to differentiate organizational differences

in TBD adsorbate that are manifested in the density im-
ages and correlate well adsorbate reactivity (i.e., self-
assembled transporting architectures). By comparing the
βn values between the density images of the equilibrated
MD simulation and an analogous stochastic adsorbate
distribution, the adsorbate concentration dependence is
largely removed and the significant variations adsorbate
organization that lead to large variations in surface den-
sity can be compared across different chemical systems.

Integrating the Betti and excess Betti curves overall
ρ filtration values (Figure S11) yields the Betti index
and excess Betti index. The cumulative number of bars
within the adsorption surface is highly dependent on life-
times of the components, i.e., how quickly components
merge as a function of the ρ filtration. Given that the
convergence of the excess Betti curves in Figure 8A is
directly related to the maximum pixel intensity (max ρ
value), the integration causes the excess β̃n to reflect
solely variations in concentration of the adsorbate on the
surface (Figure 8B). Much more insight into the varia-
tions of adsorbate organization is obtained when exam-
ining the distribution of β0 and β1 lifetimes as a func-
tion of TBP concentration and in comparing those dis-
tributions for the images from the equilibrated MD data
and analogous stochastic adsorbate images. This is ob-
tained from the persistent entropies (PE) and excess per-
sistent entropies (P̃E). Changes to the excess persis-
tent entropies are attributed to variations in the bar life-
times in the images from the equilibrated MD surfaces.
As observed in Figure 8C, the excess PE for the trans-
porting system is dramatically enhanced relative to the
non-transporting system. This indicates significant vari-
ations in density maxima and minima on the surface un-
der transporting conditions and reflects large variations
in self-assembled transporting protrusions therein. This
agrees well with the analysis of surface protrusions in
this system using geometric measure theory.[57]



D. Dynamic Evolution of Adsorbate Organization at the
Instantaneous Surface

To study the dynamic behavior of the TBP organiza-
tion at the surface, one must analyze the persistent ho-
mology features of images created at each step in time.
Recall that in this instance, all pixels in the density image
without an adsorbed TBP are connected components at
a filtration value of ρ = 0, and the presence of a TBP
creates a cycle (β1 bar) at ρ = 1 in the density im-
age. For an ideal case, where each TBP is isolated and
does not interact to form any TBP self-assembled surface
species (ideal conditions), the total number of TBP will
be equivalent to the total number of cycles. However,
as TBPs interact and form self-assembled surface protru-
sions, the number of cycles will vary significantly from
the number of adsorbed TBP. This is visually depicted
in Figure 5 and forms the basis of the definition of the
non-ideality index I(β1) in Equation 5, where a value of
1 indicates ideality and the smaller the value becomes,
the less ideal the TBP interactions. As shown in Figure
S15 the I(β1) values for all TBP laden water/vapor it-
nerfaces have values quite close to 1, indicating their in-
ability to form self-assembled species that can lead to so-
lute transport. However, in the LiNO3(aq)/hexane inter-

FIG. 9. Non-ideality index I(β1) as a function of time for the
instantaneous adsorption of n TBP at the LiNO3(aq)/hexane in-
terface.

face the enhanced surface roughness coupled to trans-
port phenomena dramatically reduce the average I(β1)
value, irrespective of the TBP concentration. The high-
est (most ideal) I(β1) occurs in the non-transporting n
= 80 TBP surface which has a value of 0.578, indicat-
ing significant TBP···TBP interactions (Figure 9). Yet this
is still much larger than the non-ideality index for the
transporting n = 30 TBP system. This indicates signifi-
cant self-assembly of the TBP’s available on the surface
despite a much lower TBP surface density. Alternatively

put, and in agreement with the observations made re-
garding the birth and death time distributions of β0 and
β1, the non-transporting n = 80 TBP system has a base
TBP adsorbate density that is non-interacting but with
many groupings of self-assembled TBP. In contrast, for
the n = 30 TBP system a much larger fraction of the ad-
sorbed TBP form self-assemblies. Perhaps more interest-
ing from this analysis is the magnitude of fluctuations in
I(β1) as a function of time. The standard deviation in
the I(β1) for the non-transporting n = 80 case is nearly
half that of the solute transporting n= 30 system, which
is associated with a high rate of adsorption/desorption
in the solute transporting system as well as surface reor-
ganization of the adsorbates upon solute transport.

V. Summary

Adsorbate density images from molecular dynamics
simulations of liquid interfaces have been proposed as
a means to understand interfacial organization and re-
activity. This data representation allows us to use sub-
levelset persistent homology barcodes to encode varia-
tions in the adsorbate density within the image. Al-
though chemists often think about adsorbate organiza-
tion in the context of spatial distribution, the density
maxima and minima clearly reflect heterogeneity in the
surface organization and “hot spots” of chemical reactiv-
ity caused by adsorbate...adsorbate interactions. Persis-
tent homology descriptors like persistent entropy and the
newly developed non-ideality index describe variations
in the topology of the adsorbate density and are highly
sensitive to both concentration and surface organization.
They are shown to trend well with experimentally mea-
surable quantities like interfacial tension. We explicitly
consider the amphiphile TBP at the LiNO3(aq)/hexane in-
terface under solution conditions where the amphiphiles
self-assemble yet do not readily transport solutes (on the
timescale of the simulation), or where they self-assemble
and have fast kinetics of solute transport. The PH de-
scriptors easily differentiate between these two surface
behaviors both from ensemble average data as well as
temporal analysis of the fluctuations in the descriptors.
The increasing accessibility of static and time-resolved
surface images of adsorbates (through microscopy and
simulation) and the computational expedience and sen-
sitivity of sublevelset persistent homology indicates that
the descriptors and workflow proposed in this work will
be of significant benefit to the interfacial chemistry com-
munity.
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